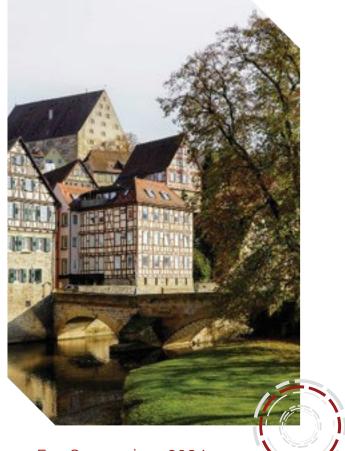
Energy Efficiency Regulations in the Asia Region

CK So **Director of** Regional Affairs, **ASIA AMCA**

Presentation Outline

01 02 03

China Taiwan Malaysia

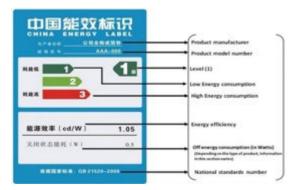

04 05 06

Thailand India Korea

07 08 09

/////////

Indonesia Vietnam Hong Kong/Philippines



CHINA

GB 19761-2020: Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades for Fans (Mandatory)

AMCA European Fan Symposium 2024

- National Standard : GB 19761 2020 (Superseded GB 19761 2009)
 - "Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades for Fans"
 - Changes Include:
 - From "Air conditioning centrifugal fan" to "centrifugal fan for HVAC, forward curved centrifugal fan"
 - Added GB/T3235 on basic of fan types, size parameters and performance curves
 - Range of pressure coefficient and efficiency ratings reduced

- National Standard : GB 19761 2020
 - Energy efficiency grades, test methods and technical requirement of fans
 - Applicable for Centrifugal fans and Axial fans for industrial boilers, power station, centrifugal fans for HVAC, forward curved centrifugal fans
 - Not applicable to ducted fans for HVAC, cabinet fans, plenum fans and fans with special structures.

- National Standard : GB 19761 2020
 - Test methods
 - GB/T 10178 Industrial fan performance testing in situ
 - GB/T 1236 (ISO5801:2007) Industrial fan performance testing using standardized airways
 - Motor efficiency must be provided for test using direct power measurement
 - Uses pressure coefficient and specific speed to categorize the different types of fans into 3 grades
 - Grade 1 being most efficient and Grade 3 being least efficient

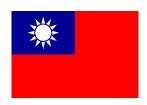
- New GB/T 43080.3-2023 on "Fans Efficiency Classification for Fans Part
 3: Fans without drives at max operating speed" was published by AQSIQ and implemented on 1st April 2024 (Recommended)
- ISO 12759 part 3 is fully adopted on FEG with minor changes in Annex A,
 A.2 and A.3 with formula for defining the upper efficiency limit of FEG
- ISO 12759 part 6 is under review since publication in May 2024

- National Standard : GB 18613 2020 (Superseded GB 18613 2012)
 - "Minimum Allowable Values of Energy Efficiency and Values of Efficiency Grade for Motors"
 - Categorizes Motor Efficiency Grade into 3 Grades, from Grade 1 to Grade 3
 - IEC 60034-2 IE2 equivalent to Grade 3 in GB18613-2012 has been changed to IE3 in GB18613-2020

IEC 60034-2	GB 18613 – 2020	GB 18613 – 2012
International Standard	China New Standard	China Old Standard
IE 5	Grade 1	
IE 4	Grade 2	Grade 1
IE 3	Grade 3	Grade 2
IE 2		Grade 3

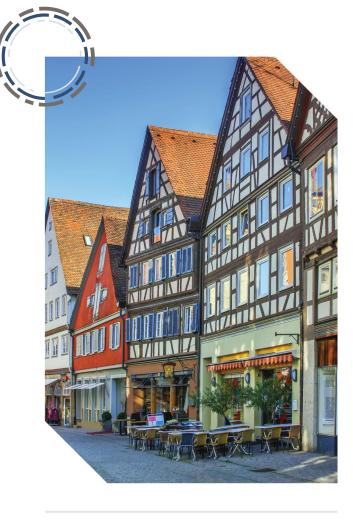
TAIWAN

Ventilator allowable energy consumption standards, labeling matters and inspection methods



- Issued by Taiwan DOE in 2023"Ventilator allowable energy consumption standards, labeling matters and inspection methods"
 - Applicable to Centrifugal fan, Axial fan and Mixed Flow Fan
 - Testing must comply to CNS 7778, or ISO 5801, or AMCA 210
 - Suitable to axial fan, centrifugal fan using 3 phase AC motors
 - Motor must be tested to CNS 14400, or IEC 60034-2-1 or IEEE 112
 Method B, minimum IE3 ≤ 75kW, minimum IE4 ≥ 75kW

- Range of products to be certified,
 - Motor kW from 0.75kW 200kW
 - Impeller diameter from 125mm 2000mm
 - Pressure from 15mmAq 1000mmAq
 - Capacity from 10CMM 3000CMM
 - Exception Fire fighting smoke extraction fan, Cooling tower fan, jet fan and induced flow fan



- Industrial Technology Research Institute (ITRI) confirmed to regulate Fan Efficiency with FMEG and implementing it mandatory in July 2024
 - Manufacturers or importers must register their products
 - Test reports must be submitted
 - Recognize test results from laboratories recognized by International Laboratory Accreditation Cooperation (ILAC)
 - AMCA International, Asia AMCA and KTC Lab are recognized by ILAC which is acceptable by ITRI
 - Annual sales volume shall be submitted by end February yearly
 - Annual check test is required, failure to do so will render removal of listing

MALAYSIA

MS 2578-1:2014

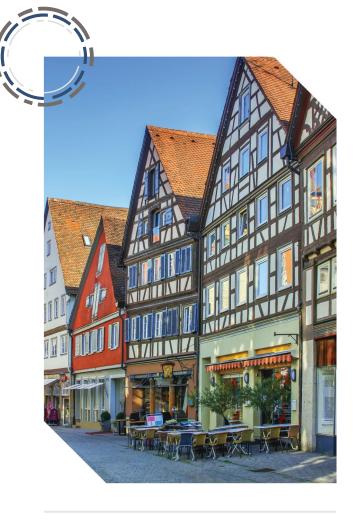
Code of Practice on Energy Efficiency and

Conservation for Industrial Electrical

Equipment – Part 1 : Fans

Energy Efficiency in Asia – Malaysia

- MS 2578 1: 2014 Part 1, Issued by Department of Standards Malaysia
 - Applicable to fans with input power range from 0.125kW to 500kW
 - Not applicable to fans for smoke extraction, industrial processes, automotive application, trains and planes, explosive atmospheres, roof ventilators and jet fans
 - Follow ISO 12759-2010 guidelines



MS 2578 - 1: 2014 Part 1

- The Minimum Energy Performance Standards (MEPS) for bare shaft fans shall be FEG 71
- The MEPS for driven fans shall be FMEG graded as per EU 327 table 1
- All Bare shaft fans are to be certified by independent 3rd Party (AMCA or Eurovent or equivalent) and to bear the FEG certified performance seals


Building Energy Code – effective March 2023

- Building Energy Code 2023
 - Applies to 9 types of buildings with total area of 2000 square meter or more per floor
 - 9 types of buildings being identified into 3 groups
 - Group 1 Office building, school (8hr/day)
 - Group 2 Department store, exhibition building/convention hall, entertainment service, theater (12hr/day)
 - Group 3 Hospital, condominium, hotel (24hr/day)
 - Draft of Fan Energy Efficiency Standard and Regulation was called to an halt during Covid Pandemic

INDIA

Bureau of Energy Efficiency - Energy Conservation and Sustainable Building Code (ECSBC)

Bureau of India Standards - National Building Code (NBC)

- Bureau of Energy Efficiency Energy Conservation and Sustainable Building Code (ECSBC)(Commercial and Office Buildings):
- 3 levels of energy efficiency
 - ECSBC Building
 - ECSBC Plus Building
 - SuperECSBC Building
 - ISO 12759 Part 3 FEG will be replaced by ISO 12759 Part 6
 - ISO 12759 Part 6 FEI may be adopted in December 2024 (targeted)
 - Centrifugal ≥ 2.5kW, FEI shall be ≥ 1.1
 - Axial ≥ 2.5kW, FEI shall be ≥ 1.0

Energy Efficiency in Asia - India

Table 5-8 Mechanical and Motor Efficiency Requirements for Fans in ECSBC Buildings

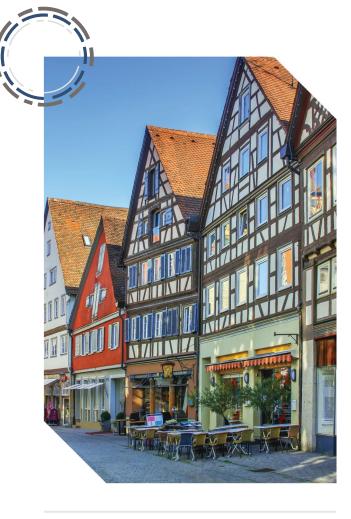
System type	Fan Type	Mechanical Efficiency	Motor Efficiency (As per IS 12615)
Air-handling unit	Supply, return and exhaust	65%	IE 3

Table 5-9 Mechanical and Motor Efficiency Requirements for Fans in ECSBC+ Buildings

System type	Fan Type	Mechanical Efficiency	Motor Efficiency (As per IS 12615)
Air-handling unit	Supply, return and exhaust	70%	IE 4

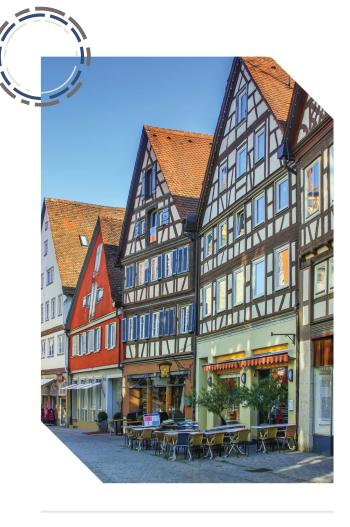
Table 5-10 Mechanical and Motor Efficiency Requirements for Fans in Super ECSBC Buildings

System Type	Fan Type	Mechanical Efficiency	Motor Efficiency (As per IS 12615)
Air-handling unit	Supply, return an exhaust	d 75 %	IE 4



- Bureau of Indian Standards National Building Code Part 8:
 Building Services, Section 3 Air Conditioning, Heating and
 Mechanical Ventilation 2015
 - Clause 4.2.1.2 the design...of mechanical ventilation system shall take into account ...e) energy efficiency
 - Clause 11.5 a fan should be selected so that its efficiency at the required point of operation is the highest possible...
 - Clause 11.5.1 FEG adopted currently

KOREA


High-Efficiency Appliance Certification Programs of Korea's Energy Standard and Labelling

- Test and Inspection methods for blowers based on KS B 6311
 - Direct and belt-driven centrifugal blower KS B 0622 terms and definitions of the term of blower
 - Applies to impeller diameter from 160mm to 1800mm
 - FEG is being applied and rating below FEG 50 will not be considered

Indonesia

Roadmap buildings and construction Indonesia - 2022

Energy Efficiency in Asia - Indonesia

- Roadmap for an energy efficient, low carbon buildings and construction sector
 - Before 2025, National Building Code agreed but not implemented
 - National Building Code will be implemented in 2025 with voluntary targets of Net Zero Energy Building (NZEB)
 - Building Code will be changed to performance based and NZEB are made mandatory for public building by 2030
 - NZEB requirements are strengthened and mandatory for all buildings by 2050

Vietnam

National Technical Regulations on Energy Efficiency Building - 2017

Energy Efficiency in Asia - Vietnam

- AMCA 205 Energy Efficiency Classification for fans
- ISO 12759 : 2010 is referred
- Ventilation and air conditioning system fan with power greater than 3.7kW must have an efficiency rating greater than FEG 67
- The efficiency level of fans with FEG must be tested by independent laboratory

Hong Kong – Code of Practice for Energy Efficiency of Building Services Installation 2021

Philippines – Guidelines on Energy Conserving Design of Buildings – 2020 Edition

Energy Efficiency in Asia – Hong Kong

6.7 Air Distribution System Fan Power

6.7.1 The system fan motor power required for a constant air volume air distribution system for a conditioned space should not exceed a limit of 1.6 W per litre per second (L/s) of supply system air flow.

6.7.2 The system fan motor power required for a variable air volume air distribution system for a conditioned space should not exceed a limit of 2.1 W per L/s of supply system air flow.

BEC 2021 - 24 of 87 - EMSD

Energy Efficiency in Asia – Philippines

B. Constant Volume Fan Systems

For fan systems that provide a constant air volume whenever the fans are operating, the power required by the motor of the combined fan system at design conditions shall not exceed 0.5 W/ m³/h.

- C. Variable Air Volume (VAV) Fan Systems
- 1. For fan systems that are able to vary system air volume automatically as a function of load, the power required by the motor of the combined fan system at design conditions shall not exceed 0.5 W/m3/h.

Thank you!

Do you have any questions?

ckso@asiaamca.org +60123166632